
JANUARY 2015 ANALYSIS QUALIFYING EXAM

KELLER VANDEBOGERT

1. Problem 1

We may cover C\{0} by countably many compact sets Kn. Now,

if any Kn had infinitely points of A, we could extract a sequence of

distinct elements of A. By compactness, this must have a convergent

subsequence; however, by our condition on A, this subsequence must

converge to 0 /∈ Kn, which is a contradiction. Then, we deduce that

each Kn contains only finitely many points of A, so that A can be

written as the countable union of finite sets, and is hence countable, as

desired.

2. Problem 2

(a). ” =⇒ ” Argue by contraposition. If #{n ∈ N | d(x, xn) < ε} <∞

for some ε > 0, consider

δ := min
xn∈Bε(x)\{x}

{d(xn, x)}

This is positive since there are only finitely many positive distances,

so that for δ/2, there is no xn with d(xn, x) < δ/2, in which case no

subsequence can possibly converge.

”⇐= ” For each k > 1, there exists xnk ∈ B1/k(x). Choosing xnk for

all k, we see that

lim
k→∞

d(xnk , x) = 0
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so that xnk is a convergent subsequence.

(b). We use part (a) and argue by contraposition; that is, suppose

there exists a sequence (xn)n∈N with no accumulation point. We want

to show that M is not compact. Then, for each n, there exists εn such

that

Bεn(xn) ∩M = {xn}

Whence {xn} is open for all n ∈ N. However, every singleton set is

closed in a Hausdorff space, in which case we see

M =
(
M\(xn)n∈N

)
∪
( ∞⋃
n=1

{xn}
)

is an open cover that has no finite subcover, so that M is not compact.

3. Problem 3

By Cauchy’s integral formula,

f ′(0) =
1

2pi

ˆ
Br(0)

f(z)

z2
dz

Whence

2f ′(0) =
1

2πi

ˆ
Br(0)

f(z)− f(−z)

z2
dz

Taking the modulus of the above,

2|f ′(0)| 6 1

2π

ˆ
Br(0)

|f(z)− f(−z)|
|z|2

dz

6
1

2πr2
· d · 2πr =

d

r

Letting r → 1, we find

2|f ′(0)| 6 d

as contended.
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4. Problem 4

We see that if z3 + 1 = 0,

z = eiπ/3, eiπ, e5πi/3

By Cauchy’s residue formula,ˆ
γ

z(z − 2)

z3 + 1
dz = 2πi

∑
Res
(z(z − 2)

z3 + 1
, zi

)
So, computing our residues,

lim
z→−1

(z + 1)z(z − 2)

z3 + 1
= lim

z→−1

z(z − 2)

z2 − z + 1

= 1

lim
z→eiπ/3

(z + 1)z(z − 2)

z3 + 1
= lim

z→eiπ/3

z(z − 2)

(z + 1)(z − e5πi/3

=
i√
3

lim
z→e5iπ/3

(z + 1)z(z − 2)

z3 + 1
= lim

z→e5iπ/3

z(z − 2)

(z + 1)(z − eπi/3

=
−i√

3
In which case ˆ

γ

z(z − 2)

z3 + 1
dz = 2πi

5. Problem 5

If f is integrable, this is trivial by Lebesgue’s dominated conver-

gence theorem. Assume then that f is not integrable. We may extract

a subsequence fnk increasing to f , so that by Lebesgue’s monotone

convergence theorem, ˆ
fnkdµ→

ˆ
f =∞

Now, choose an arbitrary subsequence. We may extract a further sub-

sequence that is increasing to f , and by the same logic above, this
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sub-subsequence must converge to
´
f . Then, this shows that ev-

ery subsequence has a further subsequence converging to f , whence´
fn →

´
f .

6. Problem 6

(a). f is absolutely continuous if for every ε > 0 there exists δ such

that for any set of open intervals {(ak, bk)} with

N∑
k=1

bk − ak < δ

we have
N∑
k=1

|f(bk)− f(ak)| < ε

(b). Let ε > 0, and suppose A is measurable with λ(A) = 0. Note first

that absolutely continuity ensures the existence of a δ such that any

set of open intervals {(ak, bk)} with
∑N

k=1 bk − ak < δ implies

N∑
k=1

|f(bk)− f(ak)| < ε

By definition of Lebesgue measure, we may find disjoint open intervals

{(ak, bk)}k∈N with A ⊂
⋃∞
k=1(ak, bk) and

λ
( ∞⋃
k=1

(ak, bk)
)
< δ

Let K be any compact subset of A; we may extract a finite subcover

{(aki , bki)} of K. Then, we see that

λ(f(K)) 6 λ
( N⋃
i=1

f(aki , bki))

6
N∑
i=1

|f(bki)− f(aki)|

< ε (Absolute continuity)
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As ε > 0 is arbitrary, we deduce that the image of every compact subset

of A has measure 0. By continuity and surjectivity of f onto its image,

every compact subset of f(A) is the image of some compact subset

of A, whence every compact subset of f(A) has zero measure. Inner

regularity of Lebesgue measure gives:

λ(f(A)) = sup
K⊂A cpt

{λ(K)}

= 0

So that λ(f(A)) = 0, as desired.

7. Problem 7

We can show an even stronger result; that is, lim supn→∞ fn and

lim infn→∞ fn are measurable.

{x | lim sup
n→∞

fn 6 c} =
⋂
k>1

{x | lim sup
n→∞

fn < c+ 1/k}

=
⋂
k>1

⋃
n>1

⋂
m>n

{x | fm(x) < c+ 1/k}

Similarly,

{x | lim inf
n→∞

fn 6 c} =
⋂
k>1

{x | lim inf
n→∞

fn < c+ 1/k}

=
⋂
k>1

⋂
n>1

⋃
m>n

{x | fm(x) < c+ 1/k}

As each fn is measurable, the above are both clearly measurable sets,

so that f is measurable.

8. Problem 8

(a). Recall that lim supk→∞Ak =
⋂
k>1

⋃
j>k Aj. In order to inter-

change the order of the limit and measure, we must verify that at least

one term has finite measure. By assumption,

µ(
⋃
k>1

Ak) 6
∞∑
k=1

µ(Ak) <∞
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so that

µ(lim sup
k→∞

Ak) = lim
k→∞

µ(
⋃
j>k

Aj)

6 lim
k→∞

∑
j>k

µ(Aj)

= 0

so that µ(lim supk→∞Ak) = 0. For reference, this is commonly referred

to as the Borel-Cantelli lemma.

(b). We define our nk inductively. Choose n1 freely. Since fn is Cauchy

in measure, we may find n2 > n1 such that

µ
(
{x | |fn1(x)− fn2(x)| > 1/2}

)
< 1/2

Now, choose n3 > n2 such that

µ
(
{x | |fn2(x)− fn3(x)| > 1/4}

)
< 1/4

and, continuing in an inductive fashion, suppose we have chosen nk

satisfying the requirements of the problem, we may choose nk+1 > nk

such that

µ
(
{x | |fnk − fnk+1

| > 1/2k}
)
< 1/2k

so that we can construct the subsequence (nk)k∈N as desired. Now that

(nk)k∈N has been chosen, note that

∞∑
k=1

µ(A1/2k

nk,nk+1
) < 1 <∞

So that, applying part (a),

µ(lim sup
k→∞

A1/2k

nk,nk+1
) = 0
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(c). Suppose x ∈ X\A. Then, by De Morgan’s laws,

x ∈ lim inf
k→∞

A1/2k c
nk,nk+1

That is, there exists K ∈ N such that for all k > K,

|fnk − fnk+1
(x)| < 1

2k

In particuar, upon fixing x we see that for all j > k,

|fnk(x)− fnj(x)| 6 |fnk(x)− fnk+1
|+ |fnk+1

(x)− fnk+2
|

+ · · ·+ |fnj−1
(x)− fnj(x)|

<
1

2k
+

1

2k+1
+ · · ·+ 1

2j−1

=
1

2k

(1− 1
2j−k

1− 1
2

)
<

1

2k−1

Whence we deduce that (fnk(x))k∈N is Cauchy. Since this is simply

a sequence of real numbers, we use completeness of R to deduce that

fnk(x)→ f(x) ∈ R.

(d). By countable subadditivity,

µ(Bm) 6 µ(A) +
∑
i>m

A1/2i

ni,ni+1

< 0 +
1

2m−1

Letting m→∞, we find

lim
m→∞

µ(Bm) = 0

as contended.

(e). We simply use the definition of Bm. Note that if x /∈ Bm, then,

x /∈ A and x ∈
⋂
i>mA

1/2i

ni,ni+1 . That is, for all i > m,

|fni(x)− fni+1
(x)| < 1

2i
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for all x /∈ Bm. Then, by an identical computation to part (c), for

i > j > m,

|fnj(x)− fni(x)| 1

2j−1

as desired.

(f). Let ε > 0. We may find m ∈ N such that (by part (e)),

µ
(
{x | |fnm(x)− f(x)| > 1

2m−1
}
)
< ε

To see this more easily, note that since µ(Bm) → 0. Also, if x /∈ Bm,

we know that for all k > m,

|fnm(x)− fnk(x)| < 1

2m−1

Letting k →∞, we find

|fnm(x)− f(x)| < 1

2m−1

so that |fnm(x)−f(x)| > 1
2m−1 whenever x ∈ Bm, and since µ(Bm)→ 0,

there exists M ∈ N such that whenever m > M , µ(Bm) < ε. Putting

this all together, we get the above claim.

(g). Let ε > 0. As fn is Cauchy in measure, there exists N ∈ N such

that for all n, m > N ,

µ
(
{x | |fn(x)− fm(x)| > ε/2}

)
<
ε

2

And, by part (f), there exists M ∈ N such that for all m > M ,

µ
(
{x | |fnm(x)− f(x)| > ε/2} < ε

2

Let n > N and choose m > M such that nm > N . If x is such that

|fn(x)− f(x)| > ε
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then,

2ε 6 |fn(x)− f(x)|

6 |fnm(x)− f(x)|+ |fn(x)− fnm(x)|

=⇒ |fn(x)− fnm(x)| > ε/2 or |fnm(x)− f(x)| > ε/2

In which case, by definition,

{x | |fn(x)−f(x)| > ε} ⊂ {x | |fn(x)−fnm(x)| > ε/2}∪{x | |fnm(x)−f(x)| > ε/2}

Taking measures of the above,

µ
(
{x | |fn(x)− f(x)| > ε/2}

)
6 µ

(
{x | |fn(x)− fnm(x)| > ε/2}

)
+ µ
(
{x | |fnm(x)− f(x)| > ε/2}

<
ε

2
+
ε

2
= ε

And we deduce that fn → f in measure.

9. Problem 9

(a). False. Every sequence is a net, so, consider {0, 1}N endowed with

the product topology and let fn ∈ {0, 1}2
N

be the sequence of functions

fn : 2N → {0, 1} such that

fn(A) = χA(n)

If A ⊂ N is infinite, choose any other B ⊂ A such that both B and

A\B are infinite. Consider then {fn(B)}n∈A. This has no convergent

subsequence since by construction, the above is never eventually con-

stant. However, by Tychonoff’s theorem, {0, 1}2N is compact, so there

does exist a convergent subnet of fn(B)}n∈A; thus, this subnet is clearly

not a subsequence since no subsequence can converge.
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(b). True. We see

∂u

∂x
= cos(x) cosh(y),

∂v

∂y
= cos(x) cosh(y)

and
∂u

∂y
= sin(x) sinh(y),

∂v

∂x
= − sin(x) sinh(y)

(c). False. Set

aij :=


1, i = j + 1

−1, i = j − 1

0, else

Then,
∞∑
j=1

aij =

{
−1, i = 1

0, else

∞∑
i=1

aij =

{
1, i = 1

0, else

So that
∞∑
i=1

∞∑
j=1

aij = −1 6= 1 =
∞∑
j=1

∞∑
i=1

aij

(d). False. The Cantor function is the standard counterexample, as

f(1)− f(0) = 1 6= 0 =

ˆ 1

0

f ′(x)dx


