JANUARY 2015 ANALYSIS QUALIFYING EXAM

KELLER VANDEBOGERT

1. PROBLEM 1

We may cover C\{0} by countably many compact sets K,. Now,
if any K, had infinitely points of A, we could extract a sequence of
distinct elements of A. By compactness, this must have a convergent
subsequence; however, by our condition on A, this subsequence must
converge to 0 ¢ K, which is a contradiction. Then, we deduce that
each K, contains only finitely many points of A, so that A can be
written as the countable union of finite sets, and is hence countable, as

desired.

2. PROBLEM 2

(a). 7 =7 Argue by contraposition. If #{n € N | d(z,z,) < €} < o0

for some € > 0, consider

0:= min {d(z,,z)}

zn€Be(z)\{z}

This is positive since there are only finitely many positive distances,
so that for §/2, there is no x,, with d(z,,z) < §/2, in which case no
subsequence can possibly converge.

7 <" For each k > 1, there exists z,,, € Bl/k(x). Choosing z,,, for
all k, we see that

lim d(x,,,z) =0

k—o0
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so that z,, is a convergent subsequence.

(b). We use part (a) and argue by contraposition; that is, suppose
there exists a sequence (x,)neny With no accumulation point. We want
to show that M is not compact. Then, for each n, there exists ¢, such

that

B, (xn) "M ={z,}

Whence {z,} is open for all n € N. However, every singleton set is

closed in a Hausdorff space, in which case we see

M = (M\(za)ner) U (| J{za})

is an open cover that has no finite subcover, so that M is not compact.

3. PROBLEM 3

By Cauchy’s integral formula,

R | f(z)
FO0) =55 /m =

210 =5 [, TIH ()= 12)y,

Whence

271 22

Taking the modulus of the above,

1 _f(—
2/£(0)] < _/ £() = F=2ly,
21 /B, (0) 2]
1 d
< od-omr = =
27r? d-2mr r
Letting » — 1, we find
21f(0) < d

as contended.
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4. PROBLEM 4
We see that if 23 +1 =0,

oy = €M/3, i 6571’1/3

€ Y
By Cauchy’s residue formula,

2(2-2) 2(z—2)
/7 o dz-QmZRes( o ,z,)

So, computing our residues,

lim (z4+1)z(z — 2) _ 5 2(z—2)
z——1 23 4+1 2——122 — 241
=1
lim (z+1)z(z2—2) o 2(z — 2)
z—ein/3 2341 z—eim/3 (Z + 1)(2’ — 5mi/3
o
V3
lim (z+1)z(z—2) o 2(z — 2) |
cmevin/s 284 1 smesin/s (2 4 1)(z — emif3

—1

V3

-2
/—z(z )dz = 2mi
”

23 4+1

In which case

5. PROBLEM 5

If f is integrable, this is trivial by Lebesgue’s dominated conver-
gence theorem. Assume then that f is not integrable. We may extract

a subsequence f,, increasing to f, so that by Lebesgue’s monotone

/fnkdu—>/f_oo

Now, choose an arbitrary subsequence. We may extract a further sub-

convergence theorem,

sequence that is increasing to f, and by the same logic above, this
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sub-subsequence must converge to [ f. Then, this shows that ev-

ery subsequence has a further subsequence converging to f, whence
J = [T
6. PROBLEM 6

(a). f is absolutely continuous if for every ¢ > 0 there exists § such

that for any set of open intervals {(ay, by)} with

N
Zbk—ak <0
k=1

we have

=

Z|f(bk) — flap)| < e

k=1
(b). Let € > 0, and suppose A is measurable with \(A) = 0. Note first
that absolutely continuity ensures the existence of a § such that any

set of open intervals {(a,by)} with Z,ivzl br — ap < 0 implies

> 1F(be) = flaw)| < e
k=1

By definition of Lebesgue measure, we may find disjoint open intervals

{(ak, bk)}kEN with A C Uzozl(ak, bk) and

o0

)\( U(ak, bk)) <9

k=1

Let K be any compact subset of A; we may extract a finite subcover

{(ak,;,bx,)} of K. Then, we see that

N

< S 1) — Flar)
i=1
< € (Absolute continuity)




JANUARY 2015 ANALYSIS QUALIFYING EXAM 5

As e > 0 is arbitrary, we deduce that the image of every compact subset
of A has measure 0. By continuity and surjectivity of f onto its image,
every compact subset of f(A) is the image of some compact subset
of A, whence every compact subset of f(A) has zero measure. Inner
regularity of Lebesgue measure gives:
A(f(A)) = sup {A(K)}
KCA cpt
=0
So that A(f(A)) = 0, as desired.

7. PROBLEM 7

We can show an even stronger result; that is, limsup,,_, f, and

liminf,,_,. f, are measurable.

{z | limsup f, < ¢} = ﬂ{x | limsup f,, < ¢+ 1/k}

~NU NG @) <es 1)

k>1n>1m>n

Similarly,
{z | llgg.}ffn <cl= ﬂ{x | hgg)lffn <c+1/k}

k>1

~ NN Ute | fule) < e+ 1/k}

k>1n=>1m>n

As each f, is measurable, the above are both clearly measurable sets,

so that f is measurable.

8. PROBLEM 8

(a). Recall that limsup,_ . Ax = [Nz Ujz A5 In order to inter-
change the order of the limit and measure, we must verify that at least

one term has finite measure. By assumption,
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so that

p(limsup Ag) = hm 1 UA

k—o00 >k

so that p(limsup,,_,., Ax) = 0. For reference, this is commonly referred

to as the Borel-Cantelli lemma.

(b). We define our ny, inductively. Choose n; freely. Since f,, is Cauchy

in measure, we may find ny > n; such that

p({@ | 1fon (@) = fro(@)] 2 1/2}) < 1/2

Now, choose nz > ng such that

p({z | [ foe (@) = fra(@)| > 1/4}) < 1/4

and, continuing in an inductive fashion, suppose we have chosen ny
satisfying the requirements of the problem, we may choose ng.; > ny

such that
w({z | 1fny = frren| = 1/27}) <1/2F

so that we can construct the subsequence (ny)gen as desired. Now that

(nk)ren has been chosen, note that
1/2
Z“ A2 ) <1<
So that, applying part (a),

p(limsup AV Y=

Nk sNk41
k—o00
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(c). Suppose x € X\ A. Then, by De Morgan’s laws,

z € liminf AL/ e

k—o00 e Tk41
That is, there exists K € N such that for all £ > K,
1

‘fnk - fnk+1(‘r)‘ < ?

In particuar, upon fixing x we see that for all j > k,
‘fnk(‘r) - fnj<x>| < |fnk(x) - fnk+1| + |fnk+1<'r) - fnk+2’
Tt |fnj—1($) - fnj<x>’
1 1 1
e

9k k+1 2i—1
B i(l — 2%
- 1
28\ 14

1

ok—1
Whence we deduce that (f,, (z))ken is Cauchy. Since this is simply

<

a sequence of real numbers, we use completeness of R to deduce that

fui (@) = f(z) €R.

(d). By countable subadditivity,
1/2¢
p(B) < p(A) + ) AL

=m

<0+ =1

Letting m — oo, we find

lim u(B,,) =0

m—r0o0

as contended.

(e). We simply use the definition of B,,. Note that if x ¢ B,,, then,
r¢ Aand x € ;5,, A}Lmnﬂ That is, for all 7 > m,

far (@) = fars ()] < 21
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for all x ¢ B,,. Then, by an identical computation to part (c), for
1>7 =2 m,
1

271

as desired.

(f). Let € > 0. We may find m € N such that (by part (e)),

({0 | (o) = £(0)| > 57) < ¢

To see this more easily, note that since p(B,,) — 0. Also, if © ¢ B,
we know that for all £ > m,

1
o () = Fue ()] < 5

Letting k — oo, we find

i 2) — 1) < o

so that | f,, (2)— f(2)| > 57— whenever x € B,,, and since u(B,,) — 0,
there exists M € N such that whenever m > M, u(B,,) < €. Putting

this all together, we get the above claim.

(g). Let € > 0. As f, is Cauchy in measure, there exists N € N such
that for all n, m > N,

pn({z | [falz) = fm(z)| = €/2}) < %

And, by part (f), there exists M € N such that for all m > M,

€

p{z | (@) = fl2)] 2 €/2} < 5

Let n > N and choose m > M such that n,, > N. If z is such that

[fu(x) = flz)] > €
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then,
2¢ < | ful2) = f(2)]
< S (@) = f(@)] + [ fol(2) = fr, ()]
= [ful@) = fu. (@) Z €/2 or |fn, () = fz)] > €/2

In which case, by definition,

{2 [ 1fa@)=f(2)] = €} C{z | [fol@)=fan (@) = /200{x | | fu,. (@)~ F ()] > €/2}
Taking measures of the above,
p({z | fal@) = F@)] = ¢/2}) < n({a | fal@) = fo, (@) > €/2})
+ ({2 | (@) = f(2)] > €/2}
<sHi—e

And we deduce that f,, — f in measure.

9. PROBLEM 9

(a). False. Every sequence is a net, so, consider {0, 1}V endowed with
the product topology and let f,, € {0, 1}2N be the sequence of functions
fn 28 — {0,1} such that

fn(A) = xa(n)

If A C N is infinite, choose any other B C A such that both B and
A\B are infinite. Consider then {f,(B)}nca. This has no convergent
subsequence since by construction, the above is never eventually con-
stant. However, by Tychonoft’s theorem, {0, 1}2N is compact, so there
does exist a convergent subnet of f,,(B)},ca; thus, this subnet is clearly

not a Subsequence since no subsequence can converge.
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(b). True. We see

% = cos(z) cosh(y), g—: = cos(z) cosh(y)
and
g—z = sin(x) sinh(y), % = —sin(z) sinh(y)
(c). False. Set
L i=j5+1
aij = —1, = j -1
0, else
Then,
> -1, =1
Dy = {0 1
s , else
> 1, i=1
— 0, else
So that
3 BIEEPIN 5 318
i=1 j=1 j=1 i=1

(d). False. The Cantor function is the standard counterexample, as

F) — F(0) =140 = / f'(@)dz



